Delineating the rules for structural adaptation of membrane-associated proteins to evolutionary changes in membrane lipidome
Abstract
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus . We show that unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual ‘asymmetrical’ glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S. japonicus -type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments indicate that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.
Related articles
Related articles are currently not available for this article.