Lgl cortical dynamics are independent of binding to the Scrib-Dlg complex but require Dlg-dependent restriction of aPKC
Abstract
Apical-basal polarity underpins the formation of specialized epithelial barriers that are critical for metazoan physiology. Although apical-basal polarity is long known to require the basolateral determinants Lethal Giant Larvae (Lgl), Discs Large (Dlg) and Scribble (Scrib), mechanistic understanding of their function is limited. Lgl plays a role as an aPKC inhibitor, but it remains unclear whether Lgl also forms a complex with Dlg or Scrib. Using fluorescence recovery after photobleaching, we show that Lgl does not form immobile complexes at the lateral domain ofDrosophilafollicle cells. Optogenetic depletion of plasma membrane phosphatidylinositol 4,5-biphosphate (PIP2) or Dlg removal accelerate Lgl cortical dynamics. However, whereas Lgl turnover relies on PIP2binding, Dlg and Scrib are only required for Lgl localization and dynamic behavior in the presence of aPKC function. Furthermore, light-induced oligomerization of basolateral proteins indicate that Lgl is not part of the Scrib-Dlg complexin vivo. Thus, Scrib-Dlg are necessary to repress aPKC activity in the lateral domain but do not provide cortical binding sites for Lgl. Our work therefore highlights that Lgl does not act in a complex but in parallel with Scrib-Dlg to antagonize apical determinants.
Related articles
Related articles are currently not available for this article.