Omada: Robust clustering of transcriptomes through multiple testing
Abstract
Cohort studies increasingly collect biosamples for molecular profiling and are observing molecular heterogeneity. High throughput RNA sequencing is providing large datasets capable of reflecting disease mechanisms. Clustering approaches have produced a number of tools to help dissect complex heterogeneous datasets, however, selecting the appropriate method and parameters to perform exploratory clustering analysis of transcriptomic data requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent. To address this we have developed Omada, a suite of tools aiming to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning based functions. The efficiency of each tool was tested with five datasets characterised by different expression signal strengths to capture a wide spectrum of RNA expression datasets. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Within datasets with less clear biological distinctions, our tools either formed stable subgroups with different expression profiles and robust clinical associations or revealed signs of problematic data such as biased measurements.
Related articles
Related articles are currently not available for this article.