СhronobioticsDB: The Database of Drugs and Compounds Modulating Circadian Rhythms

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Chronobiotics represent a pharmacologically diverse group of substances, encompassing both experimental compounds and those utilized in clinical practice, which possess the capacity to modulate parameters of circadian rhythms. These substances influence fluctuations in various physiological and biochemical processes, including the expression of core "clock" genes in model organisms and cell cultures, as well as the expression of clock-controlled genes. Despite their chemical heterogeneity, chronobiotics share the common ability to alter circadian dynamics. The concept of chronobiotic drugs has been recognized for over five decades, dating back to the discovery and detailed clinical characterization of the hormone melatonin. However, the field remains fragmented, lacking a unified classification system for these pharmacological agents. Current categorizations include natural chrononutrients, synthetic targeted circadian rhythm modulators, hypnotics, and chronobiotic hormones, yet no comprehensive repository of knowledge on chronobiotics exists. Addressing this gap, the development of the world’s first curated and continuously updated database of chronobiotic drugs—circadian rhythm modulators—accessible via the global Internet, represents a critical and timely objective for the fields of chronobiology, chronomedicine, and pharmacoinformatics/bioinformatics. The primary objective of this study is to construct a relational database,”ChronobioticsDB” , utilizing the Django framework and PostGreSQL as the database management system. The database will be accessible through a dedicated web interface and will be filled in with data on chronobiotics extracted and manually annotated from PubMed, Google scholar, Scopus, and Web of Science articles. Each entry in the database will comprise a detailed compound card, featuring links to primary data sources, a molecular structure image, the compound’s chemical formula in machine-readable SMILES format, and its name according to IUPAC nomenclature. To enhance the depth and accuracy of the information, the database will be synchronized with external repositories such as ChemSpider (Pence and Williams, A., 2010), DrugBank, Chembl, ChEBI, Engage, UniProt, and PubChem. This integration will ensure the inclusion of up-to-date and comprehensive data on each chronobiotic. Furthermore, the biological and pharmacological relevance of the database will be augmented through synchronization with additional resources, including the FDA. In cases of overlapping data, compound cards will highlight the unique properties of each chronobiotic, thereby providing a robust and multifaceted resource for researchers and practitioners in the field. The database is accessible at https://chronobiotic.ru.

Related articles

Related articles are currently not available for this article.