Proteus Project - CRISPR-Based Programmable Therapeutics for Targeted Apoptosis in Cancer Cells

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Cancer therapy faces a critical need for treatments that selectively eliminate malignant cells without harming healthy tissue. The Proteus Project addresses this challenge by engineering a programmable gene circuit that couples CRISPR-based RNA sensing with an inducible cell death mechanism. Specifically, we repurpose a novel Type III-E CRISPR-Cas system (“Craspase”) – an RNA-guided protease complex – to detect cancer-specific RNA transcripts and, in response, cleave engineered gasdermin fusion proteins to trigger cell death (1)(2). We constructed the Proteus system in Saccharomyces cerevisiae as a surrogate model, integrating components that sense an oncogenic KRAS mutation and execute targeted pyroptosis (inflammatory apoptosis-like cell death). Preliminary results demonstrate successful assembly of the Craspase– gasdermin circuit, expression of key proteins, and proof-of-concept cell killing specifically in the presence of the oncogenic RNA trigger. This work, conducted as part of the iGEM 2025 SynBio Collective, showcases a modular synthetic biology approach for precision oncology therapeutics. The ongoing study underscores the potential of CRISPR-guided proteases in in situ cancer cell ablation and sets the stage for future validation in mammalian systems.

Related articles

Related articles are currently not available for this article.