Senescence-Linked Fibrosis in the Aging Human Ovary Revealed by p16-Based Histological Profiling and Spatial Transcriptomics

This article has 0 evaluations Published on
Read the full article Related papers
This article on Sciety

Abstract

Cellular senescence is implicated as a driver of ovarian aging, but senescent cells in the human postmenopausal ovary remain poorly defined. Using spatially resolved p16INK4a protein expression, a canonical senescence marker, we identified and mapped senescent cells in postmenopausal ovaries. We integrated p16 immunohistochemistry, multiplexed immunofluorescence, spatial transcriptomics, and AI-guided digital pathology to map senescent microenvironments. p16-positive cells formed discrete stromal, vascular, and cyst-associated clusters that increased with age and were enriched for macrophages and myofibroblast-like cells. Whole-transcriptome profiling of 92 spatial regions uncovered a 32-gene p16-associated signature, BuckSenOvary, that distinguished p16-positive regions across cortex and medulla. BuckSenOvary is characterized by suppression of cell-cycle regulators and activation of inflammatory and extracellular-matrix remodelling genes. AI-based collagen matrix analysis confirmed that p16-positive regions exhibit more architecturally complex collagen, demonstrating that focal senescent microenvironments are fibro-inflammatory. These findings position senescent ovarian niches as therapeutic targets to preserve ovarian function.

Related articles

Related articles are currently not available for this article.